Tell us about yourself and DDS Refining.

DDS Refining is a precious metal refining company that specializes in processing gold and porcelain-fused-to-metal (PFM) scrap from the dental industry. We are a division of Medidenta, which has been working with the dental industry since 1944. I have been serving as the vice president of sales and operations of the refining division since 2009 and have been in the dental refining industry for more than 10 years. I have given dozens of lectures during that time, and I have also been published several times in major dental and dental laboratory periodicals.

What are some of the mistakes you see dental offices making when it comes to their scrap metal?

There are a few common mistakes a lot of offices make. The first one would be not collecting all of the scrap. Gold crowns, inlays, and bridges seem to have an obvious value, but I am still amazed when I hear dentists tell me they just throw their PFM scrap in the waste. I know some of this scrap will be a nonprecious alloy, but quite a bit of PFM alloys are palladium and gold-based. The easier it is to cut through, the more likely it is a precious alloy, so save it all; we will determine through the smelting and assaying process what the precious metal content is.

What I would consider to be the biggest mistake is selling to the person who wants to “weigh and pay.” This is the person who puts your scrap on a scale and then whips out some cash and somehow knows what the fair market value is based on weight alone. I’ve never understood the allure of this method since there are other, more precise options available. What most dentists may not realize is that they are typically only getting 40% to 50% of the value when they opt for the ‘cash-on-the-spot’ approach.

From start to finish, how does the refining process work with DDS Refining?

Once the dentist has sent his or her scrap metal in to DDS Refining, we log in each lot of scrap individually and assign it a unique “lot” number for easy tracking. We then prepare the scrap to be smelted, typically by adding several things to it. Borax and soda ash effectively create a “holding” slag where all the impurities that don’t burn off go when they separate from the metal. Copper is usually added as well, primarily to help alloy the different metals and bring the overall melt temperature down. When done properly, the smelting process provides us with a homogeneous bar that is free of anything nonmetallic. This is key because we then take a small sample of the bar to perform the assay.

The assay process involves smelting the scrap, then taking a small sample of it, which we then weigh and determine what the actual elemental makeup is. We can then determine how much PFM scrap there is and what the relative amounts of other nonprecious metals are. We then determine the removal amount of each scrap metal we have, and we can then determine how much money is due to the dentist.

What’s new in 2012 for DDS Refining and Medidenta?

Well, we are happy to be celebrating 68 years in the dental industry, which is a great achievement. Medidenta is excited to introduce a line of high-end high-speed handpieces in addition to our traditional line of classic handpieces. We are also thrilled to see the response we have been getting to our 3-file endodontic system, REVO-S, which is really saving our dentists time and money by going to a simpler system. And when you use DDS Refining, you qualify for an immediate 10% discount on virtually everything in our catalog. Plus, we give our dentists the option to apply money from their scrap settlement to future purchases to get a 40% bonus. That means $1,000 becomes $1,400 in our catalog. It’s just another way we can help the dental office stretch its dollars.

The biggest news for Medidenta is that after nearly 70 years of operations in New York, we are excited to be moving to our new facility in beautiful Las Vegas, Nevada, officially opening after the July 4th holiday. We will still have our office in Lisle, Ill, and in some capacity for a short time in New York as well.